
Lecture #2
Basics of Computer Architecture &
Assembly Language
Instructor:
Dr. Ahmad El-Banna

S
P
R

I
N

G
 2

0
1
5

E-626-A
Real-Time Embedded Systems (RTES)

Integrated Technical Education Cluster
At AlAmeeria‎

©
 A

hm
ad

 E
l-B

an
na

Agenda

Concepts of Computer Architecture

Memory

Embedded Computer Architectures

Basics of Assembly Language

Registers & Machine Codes 2

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

BASICS OF COMPUTER ARCHITECTURE 3

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Software Layers

• The software controls the operation and functionality of the
computer.

• There are many "layers" of software in the computer.

4

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Basic Computer Systems

5

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Data Flow (Von Neumann)

• Nearly all modern computers follow this form.

• Von Neumann computers are what can be termed control-flow
computers.

• Characteristics:

• There is no real difference between data and instructions.

• Data has no inherent meaning.

• Data and instructions share the same memory.

• Memory is a linear (one-dimensional) array of storage locations.

6

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Harvard Architecture

• The instructions and data have different memory spaces with
separate address, data, and control buses for each memory
space.

• Advantages:

• instruction and data fetches can occur concurrently, and

• the size of an instruction is not set by the size of the standard
data unit (word).

7

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Buses

• A bus is a physical group of signal lines that have a related
function.

• Buses allow for the transfer of electrical signals between
different parts of the computer system and thereby transfer
information from one device to another.

8

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Interrupts

• Interrupts (also known as traps or exceptions in some
processors) are a technique of diverting the processor from
the execution of the current program so that it may deal with
some event that has occurred.

• Interrupts free the processor from having to continuously
check the I/O devices to determine whether they require
service. Instead, the processor may continue with other tasks.

• When an interrupt occurs, the usual procedure is for the
processor to save its state by pushing its registers and program
counter onto the stack.

• processor then loads an interrupt vector into the program
counter.

• The interrupt vector is the address at which an interrupt
service routine (ISR) lies.

9

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Hardware interrupts

• There are two ways of telling when an I/O device is ready for the
next sequence of data to be transferred.

• The first is busy waiting or polling, where the processor
continuously checks the device's status register until the device is
ready.

• This wastes the processor's time but is the simplest to implement.
For some time-critical applications, polling can reduce the time it
takes for the processor to respond to a change of state in a
peripheral.

• The other technique of servicing an interrupt is by using vectored
interrupts, by which the interrupting device provides the interrupt
vector that the processor is to take.

• Vectored interrupts reduce considerably the time it takes the
processor to determine the source of the interrupt.

• If an interrupt request can be generated from more than one source,
it is therefore necessary to assign priorities (levels) to the different
interrupts. 10

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Software interrupts

• A software interrupt is generated by an instruction.

• It is the lowest-priority interrupt and is generally used by
programs to request a service to be performed by the system
software (operating system or firmware).

11

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

CISC/RISC

• There are two major approaches to processor architecture:

• Complex Instruction Set Computer (CISC, pronounced "Sisk")
processors and

• Reduced Instruction Set Computer (RISC) processors.

• Classic CISC processors are the Intel x86, Motorola 68xxx, and
National Semiconductor 32xxx processors, and, to a lesser
degree, the Intel Pentium.

• Common RISC architectures are the Freescale/IBM PowerPC,
the MIPS architecture, Sun's SPARC, the ARM, the Atmel AVR,
and the Microchip PIC.

12

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

CISC/RISC..
• CISC processors have a single processing unit, external memory, and

a relatively small register set and many hundreds of different
instructions.

• RISC processors have a number of distinguishing characteristics.

• They have large register sets (in some architectures numbering over
1,000), thereby reducing the number of times the processor must
access main memory.

• Often-used variables can be left inside the processor, reducing the
number of accesses to (slow) external memory.

13

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Memory

• Memory is used to hold data and software for the processor.

• There is a variety of memory types, and often a mix is used
within a single system.

• Some memory will retain its contents while there is no power,
yet will be slow to access.

• Other memory devices will be high-capacity, yet will require
additional support circuitry and will be slower to access.

• Still other memory devices will trade capacity for speed,
yielding relatively small devices, yet will be capable of keeping
up with the fastest of processors.

14

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Memory..

• Memory chips can be organized in two ways, either in word-organized or
bit-organized schemes.

• In the word-organized scheme, complete nibbles, bytes, or words are stored
within a single component.

• Whereas with bit-organized memory, each bit of a byte or word is allocated
to a separate component.

• Memory chips come in different sizes, with the width specified as part of
the size description.

• For instance, a DRAM (dynamic RAM) chip might be described as being
4Mx1 (bit-organized), whereas a SRAM (static RAM) may be 512Kx8 (word-
organized).

15

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

RAM

• RAM stands for Random Access Memory.

• This is a bit of a misnomer, since most (all) computer memory may
be considered "random access."

• RAM is the "working memory" in the computer system.

• RAM is generally volatile, losing its contents when the system loses
power.

• RAMs generally fall into two categories: static RAM (also known as
SRAM) and dynamic RAM (also known as DRAM).

• SRAMs use pairs of logic gates to hold each bit of data. SRAMs are
the fastest form of RAM available, require little external support
circuitry, and have relatively low power consumption.

• DRAM uses arrays of what are essentially capacitors to hold
individual bits of data. The capacitor arrays will hold their charge
only for a short period before it begins to diminish. Therefore,
DRAMs need continuous refreshing, every few milliseconds or so.

16

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

ROM

• ROM stands for Read-Only Memory. This is also a bit of a
misnomer, since many (modern) ROMs can also be written to.

• ROMs are nonvolatile memory, requiring no power to retain
their contents.

• They are generally slower than RAM, and considerably slower
than fast static RAM.

• The primary purpose of ROM within a system is to hold the
code (and sometimes data) that needs to be present at
power-up.

• Many microcontrollers contain on-chip ROM, thereby reducing
component count and simplifying system design.

• One-Time Programmable (OTP) ROMs, as the name implies,
can be burned once only.

17

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

EPROM

• OTP ROMs are great for shipping in final products, but they
are wasteful for debugging, since with each iteration of code
change, a new chip must be burned and the old one thrown
away.

• As such, OTPs make for a very expensive development option.
No sane person uses OTPs for development work.

• A (slightly) better choice for system development and
debugging is the Erasable Programmable Read-Only Memory,
or EPROM.

• Shining ultraviolet light through a small window on the top of
the chip can erase the EPROM, allowing it to be
reprogrammed and reused.

18

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

EEPROM

• EEROM is Electrically Erasable Read-Only Memory, also known
as EEPROM (Electrically Erasable Programmable Read-Only
Memory).

• Very rarely, it is also called Electrically Alterable Read-Only
Memory (EAROM). EEROM can be pronounced as either "e-e
ROM" or "e-squared ROM," or sometimes just "e-squared" for
short.

• EEROMs can be erased and reprogrammed in-circuit. Their
capacity is significantly smaller than standard ROM (typically
only a few kilobytes), and so they are not suited to holding
firmware.

• Instead, they are typically used for holding system parameters
and mode information to be retained during power-off.

19

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Flash

• Flash is the newest ROM technology and is now dominant.
Flash memory has the re-programmability of EEROM and the
large capacity of standard ROMs.

• Flash chips are sometimes referred to as "flash ROMs" or
"flash RAMs." Since they are not like standard ROMs or
standard RAMs.

• Flash is normally organized as sectors and has the advantage
that individual sectors may be erased and rewritten without
affecting the contents of the rest of the device.

• Typically, before a sector can be written, it must be erased. It
can't just be written over as with a RAM.

 20

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

EMBEDDED COMPUTER
ARCHITECTURES

21

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Block diagram of a generic
computer

22

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Block Diagram of an Embedded
Computer

23

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

BASICS OF ASSEMBLY LANGUAGE 24

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Intro.

• Assembly-language programming works down at the machine
level, and as such, you really get a feel for what the processor
is doing and how your computer actually works.

• With assembly language, you work with data in single bytes or
words at a time.

• Assembly language has been described as the "nuts and bolts
language," because you are writing code directly for the
processor.

• For a lot of the software you will write, a high-level language
like C will be the language of choice.

• Assembly and machine code, are "hand-written," can be finely
tuned to get optimum performance out of the processor and
computer hardware.

25

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Registers

• Registers are the internal (working) storage for the processor. The
number of registers varies significantly among processor
architectures.

• Typically, the processor will have one or more accumulators. These
are registers that may have arithmetic operations performed on
them.

• In some architectures, all the registers function as accumulators,
whereas in others, some registers are dedicated for storage only and
have limited functionality.

• Some processors have index registers that can function as pointers
into the memory space.

• All processors have a program counter (also known as an instruction
pointer) that tracks the location in memory of the next instruction to
be fetched and executed.

• Some processors also have one or more control registers consisting
of configuration bits that affect processor operation and the
operating modes of various internal subsystems. 26

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

bit 0 bit 1 bit N ….

Machine Code

• Everything that a processor deals with is expressed as numbers in memory.
That applies to data, and to software as well.

• This is known as machine code, and each numeric instruction is called an
opcode.

27

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Addressing modes

• The different ways in which an instruction can reference a
register or memory location are known as the addressing
modes of the processor.

• The types of addressing modes available within different
architectures vary.

Types:

• Inherent
• The instruction deals purely with registers. CLRB clears the B

accumulator, for example.

• Immediate/Literal
• The instruction has a literal number as an operand.

• Direct
• The instruction accesses a memory location, specified by a short

address.

28

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Addressing modes..

• Extended

• The instruction accesses a memory location, specified by the full
address.

• Indexed

• The instruction uses the contents of a register as a pointer into
memory.

• Relative

• An offset is specified as part of the addressing.

29

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Big-Endian and Little-Endian
Addressing
• Microprocessors are either big endian or little endian in their

architecture.

• This refers to the way in which the processor stores data (16
bits or greater) to memory.

• A big-endian processor stores the most significant byte at the
least significant address.

• A little-endian processor stores the most significant byte at
the most significant address.

30

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Coding in Assembly

• let's say we want a 68HC11 processor to add three numbers
together (0x10, 0x1F, and 0x0C) and store the result at address
0x0027.

• This problem is easily broken down into four steps.

• We take the first number (step one),

• add the second number (step two),

• add the third number (step three), and

• store the result (step four).

• We want to do some arithmetic, so we choose an accumulator
to hold our numbers, since accumulators are registers
designed for this type of operation.

31

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Coding in Assembly..

32

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

label, s used by the assembler during
compilation to identify a given address location.
It has no direct meaning in the machine code

To call our subroutine from our main program, we simply use a
jump-to-subroutine instruction

Loops

33

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Stacks
• Many processors implement one or

more stacks, which serve as temporary
storage in external memory.

• The processor can push a value from a
register on the stack to preserve it for
later use.

• The processor retrieves this value by
popping from the stack back into a
register. In some processor
architectures, popping is also known as
pulling.

34

RT
ES

, L
ec

#2
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

• For more details, refer to:

• Chapter 1,2 John Catsoulis, Designing Embedded Hardware,
2005.

• The lecture is available online at:

• http://bu.edu.eg/staff/ahmad.elbanna-courses/12134

• For inquires, send to:

• ahmad.elbanna@feng.bu.edu.eg

35

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#2

 , S
pr

in
g 2

01
5

http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
mailto:ahmad.elbanna@feng.bu.edu.eg

